Pyecharts-气泡图

气泡图

气泡图

导入所需要的包

1
2
3
4
5
import numpy as np
import pandas as pd
from pyecharts.commons.utils import JsCode
from pyecharts.charts import *
from pyecharts import options as opts

读取数据

1
2
df1 = pd.read_excel("气泡图数据.xlsx", sheet_name=0, header=0)
df2 = pd.read_excel("气泡图数据.xlsx", sheet_name=1, header=0)

数据处理

1
2
3
4
5
6
7
data1 = []
for y, s, c in zip(df1['人均寿命'], df1['GDP总量'], df1['国家']):
data1.append([y, s, c])

data2 = []
for y, s, c in zip(df2['人均寿命'], df2['GDP总量'], df2['国家']):
data2.append([y, s, c])

另一种处理数据的方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
data1 = []
for n, x, y, s in zip(df1['国家'], df1['人均GDP'], df1['人均寿命'], df1['GDP总量']):
data1.append(opts.ScatterItem(
name=n,
value=[x, y],
symbol_size=math.sqrt(s)/500
))

data2 = []
for n, x, y, s in zip(df2['国家'], df2['人均GDP'], df2['人均寿命'], df2['GDP总量']):
data2.append(opts.ScatterItem(
name=n,
value=[x, y],
symbol_size=math.sqrt(s)/500
))

这样同时映射了图形大小,感觉这样更好点。

先画1990年

1
2
3
4
5
6
7
8
scatter1 = (Scatter()
.add_xaxis(df1['人均GDP'])
.add_yaxis('1990',
data1)
.set_global_opts(xaxis_opts=opts.AxisOpts(type_='value'),
yaxis_opts=opts.AxisOpts(is_scale=True))
)
scatter1.render("气泡图.html")

JsCode()

可以用以下代码来看参数怎么传递

1
item_color_js_2 = """function(x) {console.log(x); return x;}"""

映射GDP总量为不同大小

1
2
3
4
5
size = '''function(x) {return Math.sqrt(x[2])/500}'''

.add_yaxis('1990',
data1,
symbol_size=JsCode(size))

设置tooltips

1
2
3
4
5
6
tool = '''function(x) {return x.seriesName + '-' + x.data[3] + '<br/>'
+'人均GDP: '+x.data[0]+' 美元<br/>'
+'GDP总量: '+x.data[2]+' 美元<br/>'
+'人均寿命: '+x.data[1]+'岁';}'''

.set_global_opts(tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool)))

再画2015年

1
2
3
4
5
6
7
8
9
10
scatter2 = (Scatter()
.add_xaxis(df2['人均GDP'])
.add_yaxis('2015',
data2,
symbol_size=JsCode(size))
)

scatter1.overlap(scatter2)
scatter1.render('气泡图.html')
os.system('气泡图.html')

设置颜色

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
offset: 0,
color: 'rgb(251, 118, 123)'
}, {
offset: 1,
color: 'rgb(204, 46, 72)'
}])"""

item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
offset: 0,
color: 'rgb(129, 227, 238)'
}, {
offset: 1,
color: 'rgb(25, 183, 207)'
}])"""

echarts.graphic.RadialGradient:径向渐变色设置,前三个参数分别是圆心 x, y 和半径,第四个参数是数组, 用于配置颜色的渐变过程. 每一项为一个对象, 包含offset和color两个参数. offset的范围是0 ~ 1, 用于表示位置(offset: 0表示0% 处的颜色;offset: 1表示100% 处的颜色)

1
2
3
4
# scatter1设置
.add_yaxis(itemstyle_opts=opts.ItemStyleOpts(color=JsCode(item_color_js_1)))
# scatter2设置
.add_yaxis(itemstyle_opts=opts.ItemStyleOpts(color=JsCode(item_color_js_2)))

去掉标签

1
.add_yaxis(label_opts=opts.LabelOpts(is_show=False))

设置坐标轴

1
2
.set_global_opts(xaxis_opts=opts.AxisOpts(type_='value', name='人均GDP'),
yaxis_opts=opts.AxisOpts(is_scale=True, name='人均寿命'),

坐标轴类型: ‘value’-连续数据;'category '-离散数据;‘time’-时间轴;‘log’-对数轴

设置阴影

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
item_style_1 = {
'shadowBlur': 10,
'shadowColor': 'rgba(120, 36, 50, 0.5)',
'shadowOffsetY': 5,
'color': JsCode(item_color_js_1)
}

item_style_2 = {
'shadowBlur': 10,
'shadowColor': 'rgba(120, 36, 50, 0.5)',
'shadowOffsetY': 5,
'color': JsCode(item_color_js_2)
}

scatter1 = (Scatter()
.add_xaxis(df1['人均GDP'])
.add_yaxis('1990',
data1,
symbol_size=JsCode(size),
itemstyle_opts=item_style_1)
.set_global_opts(xaxis_opts=opts.AxisOpts(type_='value'),
yaxis_opts=opts.AxisOpts(is_scale=True),
tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool)))
)
scatter2 = (Scatter()
.add_xaxis(df2['人均GDP'])
.add_yaxis('2015',
data2,
symbol_size=JsCode(size),
itemstyle_opts=item_style_2)
)

设置背景颜色、大小

1
2
3
4
5
6
7
8
9
bg_color_js = """new echarts.graphic.RadialGradient(0.3, 0.3, 0.8, [{
offset: 0,
color: '#f7f8fa'
}, {
offset: 1,
color: '#cdd0d5'
}])"""

Scatter(init_opts=opts.InitOpts(bg_color=JsCode(bg_color_js), width='1000px', height='800px'))

设置分割线

1
2
3
.set_global_opts(xaxis_opts=opts.AxisOpts(type_='value', name='人均GDP', splitline_opts=opts.SplitLineOpts(is_show=True,linestyle_opts=opts.LineStyleOpts(type_='dashed'))),
yaxis_opts=opts.AxisOpts(is_scale=True, name='人均寿命', splitline_opts=opts.SplitLineOpts(is_show=True,linestyle_opts=opts.LineStyleOpts(type_='dashed'))),
tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool)))

添加标题、图例位置

.set_global_opts中插入

1
2
legend_opts=opts.LegendOpts(is_show=True, pos_right=10),
title_opts=opts.TitleOpts(title="1990 与 2015 年各国家人均寿命与 GDP")

全代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
import numpy as np
import pandas as pd
from pyecharts.commons.utils import JsCode
from pyecharts.charts import *
from pyecharts import options as opts

df1 = pd.read_excel("气泡图数据.xlsx", sheet_name=0, header=0)
df2 = pd.read_excel("气泡图数据.xlsx", sheet_name=1, header=0)

data1 = []
for y, s, c in zip(df1['人均寿命'], df1['GDP总量'], df1['国家']):
data1.append([y, s, c])

data2 = []
for y, s, c in zip(df2['人均寿命'], df2['GDP总量'], df2['国家']):
data2.append([y, s, c])


size = '''function(x) {return Math.sqrt(x[2])/500}'''

tool = '''function(x) {return x.seriesName + '-' + x.data[3] + '<br/>'
+'人均GDP: '+x.data[0]+' 美元<br/>'
+'GDP总量: '+x.data[2]+' 美元<br/>'
+'人均寿命: '+x.data[1]+'岁';}'''

item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
offset: 0,
color: 'rgb(251, 118, 123)'
}, {
offset: 1,
color: 'rgb(204, 46, 72)'
}])"""

item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
offset: 0,
color: 'rgb(129, 227, 238)'
}, {
offset: 1,
color: 'rgb(25, 183, 207)'
}])"""
item_style_1 = {
'shadowBlur': 10,
'shadowColor': 'rgba(120, 36, 50, 0.5)',
'shadowOffsetY': 5,
'color': JsCode(item_color_js_1)
}

item_style_2 = {
'shadowBlur': 10,
'shadowColor': 'rgba(120, 36, 50, 0.5)',
'shadowOffsetY': 5,
'color': JsCode(item_color_js_2)
}

bg_color_js = '''new echarts.graphic.RadialGradient(0.3, 0.3, 0.8, [
{
offset: 0,
color: '#f7f8fa'
},
{
offset: 1,
color: '#cdd0d5'
}
])'''

scatter1 = (Scatter(init_opts=opts.InitOpts(bg_color=JsCode(bg_color_js), width='750px', height='600px'))
.add_xaxis(df1['人均GDP'])
.add_yaxis('1990',
data1,
symbol_size=JsCode(size),
label_opts=opts.LabelOpts(is_show=False),
itemstyle_opts=item_style_1)
.set_global_opts(xaxis_opts=opts.AxisOpts(type_='value', name='人均GDP',
splitline_opts=opts.SplitLineOpts(is_show=True,
linestyle_opts=opts.LineStyleOpts(type_='dashed'))),
yaxis_opts=opts.AxisOpts(is_scale=True, name='人均寿命',
splitline_opts=opts.SplitLineOpts(is_show=True,
linestyle_opts=opts.LineStyleOpts(type_='dashed'))),
tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool)),
legend_opts=opts.LegendOpts(is_show=True, pos_right=10),
title_opts=opts.TitleOpts(title="1990 与 2015 年各国家人均寿命与 GDP"))
)
scatter2 = (Scatter()
.add_xaxis(df2['人均GDP'])
.add_yaxis('2015',
data2,
symbol_size=JsCode(size),
label_opts=opts.LabelOpts(is_show=False),
itemstyle_opts=item_style_2)
)

scatter1.overlap(scatter2)
scatter1.render('气泡图.html')
os.system('气泡图.html')

大功告成!

  • 版权声明: 本博客所有文章除特别声明外,著作权归作者所有。转载请注明出处!

扫一扫,分享到微信

微信分享二维码
  • Copyrights © 2022-2023 发现美的眼睛
  • 访问人数: | 浏览次数:

请我喝杯咖啡吧~

支付宝
微信